

Revised Advisory Committee Structure

ATAC

Dave Swain (Boeing)

Revolutionizing Aviation Subcommittee
Ed Crow (UT Ret)

Airspace Systems Task Force

J Hansman (MIT)

Safety Task Force

J O'Brian (ALPA)

Vehicle
Systems
Task Force

M Anderson (Boeing)

SATS
Advisory Committee
R Swanda
(GAMA)

Airspace Systems Task Force Membership

- Joe Burns (UAL)§
- Steve Bussolari (MIT Lincoln Lab)
- Jim Cistone (Lockheed)*
- John Hansman (MIT)
- John Kern (FAA) §
- William Leber (NWA-Dispatch)
- John O'Brian (ALPA)
- Amedeo Odoni (MIT)
- Leo Prusak (FAA-LGA Tower)
- Ruth Marlin (NATCA)*
- Robert Schwab (Boeing)*
- Phil Smith (OSU)

TF Process

- Accelerated schedule to meet ATAC reporting deadline
 - "Quick Look"
- Focused on tasked questions (see next slide)
 - Did not focus on accomplishments
- 2 Day meeting at NASA Ames
 - Some read ahead material provided by AS Program
 - First day high level reviews of 4 major projects
 - Second day TF discussion and outbriefing to project leads
- E-mail review
- Caveats
 - Time did not permit in-depth review
 - Limited time to resolve issues or misinterpretations

Questions Task Force Asked to Address

- Are the goals of the program relevant?
- Is the technology right to achieve the goal?
- Is there a coordination / integration plan with appropriate organizations (OGAs, Industry)?
- Are resources adequate?
- Is there an implementation plan including:
 - NASA activities
 - Transition plan
 - Customer/user implementation issues

Airspace System Program Goals

 Goal: "Enable major increases in the capacity and mobility of the air transportation system through development of revolutionary concepts for operations & vehicle systems"

• Objectives:

- 1 Improve throughput, predictability, flexibility collaboration, efficiency and access of the NAS
- 2 Enable General Aviation and runway-independent aircraft operations
- 3 Maintain system safety, security and environmental protection
- 4 Enable modeling and simulation of air transportation operations

Airspace System Program Goals

Assessment

- High level goal relevant and will increase in importance as economy recovers and delays due to airspace constraints reemerge
- Balance between "revolutionary" and "evolutionary" development
 - Goal statement "revolutionary"
 - Transition drives "evolutionary"
- Goal should include understanding of the current NAS and the nature and extent of future demands
- Objectives 1,3,4 also highly relevant
- Objective 2 unclear

Goal structure could be more tightly linked

- Theme Objectives>Goals>Program Objectives>Project goals>Sub-Project
 Objectives
- Goal statements vary by source and time
 - Briefing
 - Web
 - Documents

Introductory/Overarching Comments

- The Task Force strongly supports the AS Program
- NASA Airspace Program is a vital part of the National Capability in Air Transportation
 - NASA has a major research responsibility for NAS modernization
 - "NASA is the only modernization research game in town"
- NASA has made some significant contributions particularly in the more mature projects (eg AATT, AOS)
- NASA has had significant impact on the development and use of trajectory modeling and planning tools to support ATC.
- NASA has worked quite sucessfully at developing a good working relationship with the research and operational community
- Need for balanced portfolio
 - Near and long term investments
 - Specific technology/systems versus foundational research

Introductory/Overarching Comments

- Need to maintain systems perspective
- Episodic (5 year) programs make it difficult to have impact on ATM systems which have 20 year transition time constants
 - "As program is getting mature, gaining credibility, interactions set up and starting to have impact it is ending"

Airspace Systems Program - Projects

- AATT Advanced Air Transportation Technologies Project
- SATS Small Aircraft Transportation System Project
- VAMS Virtual Airspace Modeling and Simulation Project
- AOS Airspace Operations Systems

AATT Project Goals

 Goal: "In alliance with the FAA, enable next generation of increases in capacity, flexibility and efficiency while maintaining safety, of aircraft operations within the US and global airspace system"

Focus

 Human-centered automation to assist air traffic management decision making among pilots, controllers and dispatchers

• Objectives:

- 1 Human Error-Tolerant Design
- 2 Operational Flexibility
- 3 User Preferences
- **4 Integrated ATM Concepts**
- 5 Safety
- 6 All Vehicle Classes

- Goals
 - The goals of the AATT project are highly relevant.

Technology/Approach

- The focus on human-centered automation and decision aiding is a valid approach and builds on NASA capabilities. Other approaches and technologies (eg procedures, airspace redesign, surveillance) should not be neglected.
- The TF would like to have seen more effort devoted to fundamental issues such as understanding the NAS to help identify where the key constraints and opportunities for improvement are.
- The TF noted that the early focus on Terminal Area operations (imposed by early national coordination strategy) limited the ability of NASA to approach the problem at a systems level.
 - Resulting focus on ATC-Cockpit Tools
 - Limitations due to broader system context constraints which impact the effectiveness and implementability of the tools
 - Limited focus at TFM-AOC level
 - Including Strategic and Tactical planning and execution

- Coordination, Integration
 - NASA-FAA (key customer) relationship has evolved over the program
 - Need to maintain and build on this relationship
 - Developed collaborations with other key organizations
 - MITRE, Lincoln Lab, Volpe, Airlines, NATCA
 - Relationship with Labor groups influenced by Automation Centric approach
 - Concern regarding future access to operational resources, controllers, facilities and Traffic managers
 - Need to capture lessons learned for downstream programs

- Implementation
 - Some AATT Technologies have been integrated into FAA Operational Evolution Plan
 - FFP1
 - TMA, pFAST, SMA
 - FFP2
 - SMS, McTMA, D2
 - Other promising AATT elements
 - Post OEP plans less clear
 - Issues of transitioning technology
 - TRL 6 model is too simple
 - Need customer involvement and resources early and in transition
 - Lessons learned fielding research prototype systems in national infrastructure
 - Automation approaches vulnerable to Labor concerns

Resources

- Episodic (5 year) programs make it difficult to have impact on ATM systems which have 20 year transition time constants
 - "As program is getting mature, gaining credibility, interactions set up and starting to have impact it is ending"
- Need to consider and plan for transition resources
 - NASA and FAA sides
- Need for balanced portfolio of near and long term elements
 - Support for fielding and transition appears to have siphoned resources away from longer term aspects of project

SATS Project Goals

- Enterprise Goal: "Increase Mobility Enable more people and goods to travel faster and farther, anywhere, anytime with fewer delays."
- Project Goal: "Enable the use of over 5,000 small airports for on-demand, point to point air transportation"

Project Outputs:

2005 Demonstration of SATS technologies, capability and value

- Flight demo of aircraft self-separation and sequencing in non-towered, non-radar airspace
- Flight demo of cockpit systems that enable navigation to and from runways in near all-weather conditions, without the addition of traditional ground infrastructure.
- Assessment of SATS economic viability and impact on national airspace and airport infrastructure

Goals

- The goals of the SATS project were not clearly articulated in the material presented.
- Suggest including SATS Ops Capability in goal
 - Higher volume ops in non-radar and non-towered airports
 - Lower landing minimums at Minimally Equipped Facilities (200, 1/2)
 - Increased Single Pilot Safety and Mission Reliability
 - Enroute Procedures & Systems for Integrated Ops
- The rationale for the demonstration outputs was not clear.
 - What are the key questions or issues to be addressed
 - How was the point design of the demonstration system determined
 - How will this demonstration support future procedures, certification or development
 - What are the new technologies being developed or demonstrated
- The TF strongly supported the goal of assessing economic viability
- Some concern that the SATS goals may adversely affect other Airspace and mobility goals

Technology/Approach

- The TF questioned the approach of focusing on point technology demonstrations
- The basis for the technologies to be demonstrated was not clear.
 - Most technologies discussed appear to be existing or straightforward extrapolation of existing technologies.
 - What alternatives were considered?
 - What drove the design decisions (rationale)
 - Specific integrity concerns were raised regarding the Airport Management Module
- It was not clear how the expected results would advance the understanding of key issues, technology base or provide a basis for future certification or standards
- The assessment of economic viability requires capabilities that will "push the envelope" of the state of the art; over-simplified approaches may lead to misleading results

- Coordination, Integration
 - There is good coordination between NASA, participating State governments and the participating industry and research partners through the SATS Alliance
 - There is some coordination between NASA and the FAA at the REDAC and project level. However the level of FAA commitment (people and financial) is limited by other priorities.
 - Concern that the SATS project appears to be answering to too many constituencies.
 - Too many sources of direction

Implementation

- There does not appear to be a clear plan for implementation
- The next step after technology demonstration is not clear
- It is not clear that the key regulatory and operational elements at the FAA have been sufficiently engaged to identify the key barriers to implementation of the SATS vision

• Resources

 The SATS resources appear to have been spread thinly across the NCAM consortium and the 4 SATSLab Partnerships (FL, MD, NC, VA)

VAMS Project Goals

 Goal: "To develop capabilities that lead to a significant increase in the capacity of the National Airspace System, while maintaining safety and affordability"

• Objectives:

- 1 Define Potential Operational Concepts
- 2 Generate Supporting Technology Roadmaps
- 3 Establish Capability to Assess Concepts

Goals

- The goals of the VAMS project appear to be relevant.
- The Task Force would like to see "improved understanding the current NAS" as an objective
- The Assessment Objective (3) may be unrealistic depending on the level of assessment expected.
 - It is difficult to fully assess the current system
 - Suggest re-scoping objective to assess key issues in operational concepts

- Technology/Approach (Ops Concepts)
 - Independent generation of scenarios is good approach
 - Need to include operational expertise
 - Need demand basis and future constraints
 - Not clear that synthesizing from multiple independent concepts will be successful
 - Concerns regarding Ops Concept Downselect
 - Roadmaps will be critical, need to develop methodology
 - Include key decision points in methodology
 - · Robustness criteria

Technology/Approach (Modeling)

- TF Supported the Technical Modeling Approach and had detailed suggestions:
 - · "Interactive agents is the right approach"
 - "Make sure that sim capabilities are not only physics based but include symbolic reasoning and agent behavior"
 - "Consider parametric approaches to deal with uncertainty"
 - "Need to impose documentation requirements to assure that rationale is captured"
 - "Need hierarchy of models not one super model"
- TF was concerned that the expectations for the modeling may be unrealistic
 - · What is a "validated" model
 - Concern on how models will project for future concepts
 - Need to manage expectations
- Assessment and Modeling capability should be driven by key questions
 - Current modeling efforts have to guess at questions
- TF supports the delay of Human in the Loop simulation requirements pending key questions
- Need for a more detailed model review
 - Based on sample problems

- Coordination, Integration
 - FAA coordination needs to be strengthened
 - NASA and FAA need to work together to assess concepts, methods and tools that will support the FAA's and the nation's air traffic modernization needs

- Implementation
 - Internal OK
 - External Unclear

- Resources
 - Not addressed

AOS Project Goals

 Goal: "To improve the design of human-centered automation and interfaces, decision-support tools, training protocols, team practices and organizational procedures supporting current and future ATM systems"

Focus

 Minimize human error and optimize interaction between automated ATM systems & human operators - pilots, controllers, dispatchers, etc.

Objectives:

- 1 Identifying, verifying and developing advanced technology concepts, methods, and procedures
- 2 Transferring them to industry or government for application
- 3 Providing foundation for systems technology programs
- 4 Contributing facilities and human factors expertise to industry and government cooperative efforts

Goals

- The goals of the AOS project appear to be relevant.
- The Task Force suggests developing approaches to included human considerations early in system design as an objective
- The Task Force suggested that the goals be broadened to include non ATM human-centered systems such as space or maintenance applications

- Technology/Approach
 - Current Focus Areas
 - Psychological & Physiological Stressors & Factors
 - Human/Automation Integration Research
 - System Design and Analysis
 - Human Automation Reliability
 - Human Error & Countermeasures
 - Skilled Performance
 - Fatigue Countermeasures
 - Current approach is dependant on resident expertise
 - Focused but limited areas of nationally recognized expertise
 - What are the key issues for the future
 - Eg distributed human systems and team resource management
 - Recommend Strategic Planning Effort and Intellectual Renewal Plan
 - Recommend stronger links to development projects

- Coordination, Integration
 - Excellent
 - Based on HF Reputation and Credibility
 - Examples
 - NTSB
 - FAA
 - Numerous Airlines
 - GA Community
 - Boeing
 - Navy
 - Flight Safety Foundation
 - VA
 - Strong University Connection

- Implementation
 - Training materials
 - Advisory Circulars
 - Regulatory support
 - Investigations
 - Strong in cockpit
 - Weaker in ATC, AOC, TFM

Resources

- Issue of maintaining competency in anticipation of need.
 - Level-funding base research to end in 07
- Issue of maintaining NASA's leadership role in Aviation Human Factors
 - Has historically been a national core competency
 - Ability to respond to need as national resource
- The nation and NASA must determine areas of important national need and maintain a balanced portfolio in these areas.
- Human resource issues